Home
Class 9
MATHS
2^(2x) - 2^(x+3) + 2^4=0...

`2^(2x) - 2^(x+3) + 2^4=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve : 2^(2x)-2^(2x+3)+2^4=0

2 ^ (2x) + 2 ^ (x + 2) -4.2 ^ (3) = 0

4^(x)-3.2^(x+2)+2^(5)=0

4 (2x-3) ^ (2) - (2x-3) -14 = 0

IF x^2 - 2x +3 gt 0 , 2x^2 + 4 x + 3 gt 0 then x lies in the interval

Identify the type of conic section for each of the equations 1. 2x^(2) -y^(2) = 7 2. 3x^(2) +3 y^(2) -4x + 3y + 10 =0 3. 3x^(2) + 2y^(2) = 14 4. x^(2) + y^(2) + x-y=0 5. 11x^(2) -25y^(2) -44x + 50y - 256 =0 6. y^(2) + 4x + 3y + 4=0

If |{:(x^(2) +x , 3x - 1 , -x + 3),(2x +1 , 2 + x^(2) , x^(3) - 3),(x - 3, x^(2) + 4, 3x):}| = a_(0) + a_(1) x + a_(2) x^(2) + .... + x_(7) x^(7), then the value of a_(0) is

(x^(2)+3x+2)^(2)-8(x^(2)+3x)-4=0

Solve x(x+2)^(2)(x-1)^(5)(2x-3)(x-3)^(4)>=0