Home
Class 12
MATHS
If A=[(1,0,0),(0,1,0),(a,b,-1)] then A^2...

If `A=[(1,0,0),(0,1,0),(a,b,-1)]` then `A^2` is equal to (A) null matrix (B) unit matrix (C) `-A` (D) `A`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[(1 ,0, 0),(0, 1,0),( a,b, -1)] , then A^2 is equal to (a) a null matrix (b) a unit matrix (c) A (d) A

If A = [(1 ,0, 0),(0, 1,0),( a,b, -1)] , then A^2 is equal to (a) a null matrix (b) a unit matrix (c) A (d) A

If A=[(1,0,0),(0,1,0),(1,b,-10] then A^2 is equal is (A) unit matrix (B) null matrix (C) A (D) -A

If A=[(1,0,0),(0,1,0),(1,b,0] then A^2 is equal is (A) unit matrix (B) null matrix (C) A (D) -A

If A = [(1,0,0),(0,1,0),(a,b,-1)] , show that A^(2) is a unit matrix.

If A = {: [ ( 1,0,0) , ( 0,1,0) , ( a,b,-1)]:} show that A^(2) is a unit matrix .

If A=[(0,2,-3),(-2,0,-1),(3,1,0)] then A is (A) diagonal matrix (B) symmetric matix (C) skew symmetric matrix (D) none of these

If A=[(0,2,-3),(-2,0,-1),(3,1,0)] then A is (A) diagonal matrix (B) symmetric matix (C) skew symmetric matrix (D) none of these

The matrix A=[(-5,-8,0),(3,5,0),(1,2,-1)] is (A) idempotent matrix (B) involutory matrix (C) nilpotent matrix (D) none of these