Home
Class 10
MATHS
" (a) "(x-a)/(x-b)+(x-b)/(x-a)=a+(b)/(a)...

" (a) "(x-a)/(x-b)+(x-b)/(x-a)=a+(b)/(a)

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the equations : (x-a)/(x-b)+(x-b)/(x-a)=(a)/(b)+(b)/(a)

Solve the following quadratic equations by factorization: (x-a)/(x-b)+(x-b)/(x-a)=(a)/(b)+(b)/(a)

Solve the following quadratic equations by factorization: (x-a)/(x-b)+(x-b)/(x-a)=a/b+b/a

If sqrt((x-a)/(x-b))+a/x =sqrt((x-b)/(x-a)) +b/x , bne a then what is the value of x ?

(x^(3))/((x-a)(x-b)(x-c))=1+(A)/(x-a)+(B)/(x-b)+(C)/(x-c) then A=

If y=(ax^2)/((x-a)(x-b)(x-c))+(b x)/((x-b)(x-c))+c/(x-c)+1 , then prove that (y')/y=1/x[a/(a-x)+b/(b-x)+c/(c-x)]

If y=(ax^2)/((x-a)(x-b)(x-c))+(b x)/((x-b)(x-c))+c/(x-c)+1 , then prove that (y')/y=1/x[a/(a-x)+b/(b-x)+c/(c-x)]

If y=(ax^2)/((x-a)(x-b)(x-c))+(b x)/((x-b)(x-c))+c/(x-c)+1 , then prove that (y')/y=1/x[a/(a-x)+b/(b-x)+c/(c-x)]