Home
Class 10
MATHS
If x=r sin alpha cos beta, y= r sin alp...

If ` x=r sin alpha cos beta, y= r sin alpha sin beta and z= r cos alpha , ` prove that
` x^(2)+y^(2) + z^(2) = r^(2). `

Promotional Banner

Similar Questions

Explore conceptually related problems

If x = r cos theta sin phi, y = r sin theta sin phi , and z= r cos phi , prove that x^(2)+y^(2) + z^(2)=r^(2) .

If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that : x^(2) + y^(2) + z^(2) = r^(2)

If x = sin alpha, y = sin beta, z = sin (alpha + beta) then cos (alpha + beta) =

If x=r cos alpha cos beta,y=r cos alpha sin beta,z=r sin alpha then x^(2)+y^(2)+z^(2) =

If x=r sin theta cos phi, y= r sin theta sin phi, z=r cos theta , prove that x^2+y^2+z^2=r^2 .

If x=r cos alpha cos beta cos gamma , y= cos alpha cos beta sin gamma , z= r sin alpha cos beta , mu = r sin beta " then " x^(2)+y^(2) + z^(2)+mu^(2)=

If x=r sin A cos C,quad y=r sin A sin C and z=r cos A, prove that r^(2)=x^(2)+y^(2)+z^(2)

If x=r cos theta cos phi, y=r cos theta sin phi, z=r sin theta , then prove that x^(2)+y^(2)+z^(2)=r^(2).

If x = r cos alpha cos beta cos gammay == r cos alpha cos beta sin gamma, z = r sin alpha cos betamu = r sin beta then x ^ (2) + y ^ (2) + z ^ (2) + mu ^ (2) =