Home
Class 12
MATHS
sin^(-1) (ax)/c + sin^(-1) (bx)/c = sin^...

`sin^(-1) (ax)/c + sin^(-1) (bx)/c = sin^(-1) x` where `a^2 + b^2 = c^2 and c!=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

sin ^(-1)""(ax)/(C ) +sin ^(-1) ""(bx)/(c ) =sin ^(-1)""x where a^(2)+b^(2)=c^(2) and c ne 0

Statement -1: If a^(2)+b^(2)=c^(2),c ne 0 then the non zero solution of the equation sin^(-1)((ax)/(c ))+sin^(-1)((bx)/(c))=sin^(-1)x is pm 1,. Statement-2: sin^(-1)x+sin^(-1)y= sin^(-1)(x+y)

sin^(n)(ax^(2)+bx+c)

If a^(2) + b^(2) = c^(2), c != 0 , then find the non-zero solution of the equation: sin^(-1).(ax)/(c) + sin^(-1).(bx)/(c) = sin^(-1) x

If a^(2) + b^(2) = c^(2), c != 0 , then find the non-zero solution of the equation: sin^(-1).(ax)/(c) + sin^(-1).(bx)/(c) = sin^(-1) x

If a^(2) + b^(2) = c^(2), c != 0 , then find the non-zero solution of the equation: sin^(-1).(ax)/(c) + sin^(-1).(bx)/(c) = sin^(-1) x

If a^(2) + b^(2) = c^(2), c != 0 , then find the non-zero solution of the equation: sin^(-1).(ax)/(c) + sin^(-1).(bx)/(c) = sin^(-1) x

If sin^(-1)a+sin^(-1)b+sin^(-1)c=pi, then asqrt(1-a^2)+bsqrt(1-b^2)+csqrt(1-c^2) is equal to (a) a+b+c (b) a^2b^2c^2 (c) 2a b c (d) 4a b c

sin ^ (2) ((A) / (2)) + sin ^ (2) ((B) / (2)) + sin ^ (2) ((C) / (2)) = 1-sin (( A) / (2)) sin ((B) / (2)) sin ((C) / (2))