Home
Class 8
MATHS
If x > 1 and (sqrt(x+1) + sqrt(x-1))/(sq...

If x > 1 and `(sqrt(x+1) + sqrt(x-1))/(sqrt(x+1) - sqrt(x-1)) = 2` then x equals to ?

Promotional Banner

Similar Questions

Explore conceptually related problems

find x: (sqrt(x+1)+sqrt(x-1))/(sqrt(x+1)-sqrt(x-1))=3/7

sqrt(x+1)-sqrt(x-1)=sqrt(4x-1)

tan^(-1)((sqrt(1+x)+sqrt(1-x))/(sqrt(1+x)-sqrt(1-x)))

int_(1)^(5)(sqrt(x+2sqrt(x-1))+sqrt(x-2sqrt(x-1)))dx =

int(sqrt(x-1))/(x sqrt(x+1))dx " is equal to "

int(sqrt(x-1))/(x sqrt(x+1))dx " is equal to "

int(sqrt(x-1))/(x sqrt(x+1))dx " is equal to "

If (sqrt(1 +x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))=3 then x=

int ( 1+ x + sqrt( x+ x^(2)))/(( sqrt(x) + sqrt( 1+x))dx is equal to