Home
Class 12
MATHS
" If "x=sin sqrt(t)" and "y=e^(sqrt(t)),...

" If "x=sin sqrt(t)" and "y=e^(sqrt(t))," then "(d^(2)y)/(dx^(2))=

Promotional Banner

Similar Questions

Explore conceptually related problems

If x= sin sqrtt,y =e^(sqrt( t) ),then (d^(2)y)/(dx^(2))=

If x = Sin ^(-1) t, y = sqrt(1- t ^(2)) then (d^(2) y)/(dx ^(2))=

x=sinsqrt(t),y=e^(sqrt(t)) find dy/dx

If x= sin t and y= sin^(3)t , then (d^(2)y)/(dx^(2)) at t=pi/2 is

If x= sin t and y= sin^(3)t , then (d^(2)y)/(dx^(2)) at t=pi/2 is

If x = e ^(t ) sin t, y = e ^(t) cos t, then (d ^(2) y )/(dx ^(2)) at t = pi is

If x=sin t sqrt(cos2t) and y=cos tsqrt(sin2t) , find (dy)/(dx) at t=(pi)/(4) .

If x=e^(t)sin t,y=e^(t)cos t then (d^(2)y)/(dx^(2)) at x=pi is

If cos x =1/sqrt(1+t^(2)) , and sin y = t/sqrt(1+t^(2)) , then (dy)/(dx) =

If cos x =1/sqrt(1+t^(2)) , and sin y = t/sqrt(1+t^(2)) , then (dy)/(dx) =