Home
Class 11
MATHS
" If "y=sqrt(x)+(1)/(sqrt(x))," show tha...

" If "y=sqrt(x)+(1)/(sqrt(x))," show that "2x(dy)/(dx)+y=2sqrt(x)

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=sqrt(x)+(1)/sqrt(x) , then show that 2x(dy)/(dx)+y=2sqrt(x) .

If y=sqrt(x)+(1)/sqrt(x) , then show that 2x(dy)/(dx)+y=2sqrt(x) .

If y = sqrt(x) + (1)/(sqrt(x)) prove that 2x(dy)/(dx) + y = 2sqrt(x)

If y=sqrt(x)+(1)/(sqrt(x)), prove that 2x(dy)/(dx)=sqrt(x)-(1)/(sqrt(x))

If y=sqrt(x)+(1)/(sqrt(x))," then: "2x(dy)/(dx)+y=

If y=sqrt(x)+(1)/(x), Show that 2x(dy)/(dx)+y=2sqrt(x)

If y=sqrt(x)+1/(sqrt(x)) , prove that 2x(dy)/(dx)=sqrt(x)-1/(sqrt(x))

y=sqrt(x)+(1)/(sqrt(x)), prove that 2x(dy)/(dx)=sqrt(x)-(1)/(sqrt(x))

If y=log{sqrt(x-1)-sqrt(x+1)}, show that (dy)/(dx)=(-1)/(2sqrt(x^(2)-1))

If y=log{sqrt(x-1)-sqrt(x+1)}, show that (dy)/(dx)=(-1)/(2sqrt(x^2-1))