Home
Class 12
MATHS
8((3^(x-2))/(3^x-2^x))>1+(2/3)^x...

`8((3^(x-2))/(3^x-2^x))>1+(2/3)^x`

Promotional Banner

Similar Questions

Explore conceptually related problems

(7)/((x-2)(x-3))+(8)/(x-3)+1<0

Check whether the following are quadratic equations : (1) (x-1)^(2)=2(x-3) (2) x^(2)-2x=(-2)(3-x) (3) (x-2)(x+1)=(x-1)(x+3) (4) (x-3)(2x+1)=x(x+5) (5) (2x-1)(x-3)=(x+5)(x-1) (6) x^(2)+3x+1=(x-2)^(2) (7) (x+2)^(3)=2x(x^(2)-1) (8) x^(3)-4x^(2)-x+1=(x-2)^(3)

Check whether the following are quadratic equations : (1) (x-2)^(2)+1=2x-3 (2) x(x+1)=8=(x+2)(x-2) (3) x(2x+3)=x^(2)+1 (4) (x+2)^(3) = x^(3)-4

" If (3x^(3)-8x^(2)+10)/((x-1)^(4))=(3)/(x-1)+(1)/((x-1)^(2))-(7)/((x-1)^(3))+(k)/((x-1)^(2)) then "k=

(2^((3x-1)/(x-1)))^((1)/(3))<8^((x-3)/(3x-7))

Check whether the following are quadratic equations : (1) (x-3)^(2)=x(2x-5) (2) (2x-3)(8x+1) = (4x+5)(4x-5) (3) (5x+3)(x-2)=(4x+3)(2x-1) (4) (2x+5)^(3)=8(x-1)^(3) (5) x^(2)+7x-8=x(x+5) (6) x^(3)+9x^(2)-7x+2=(x+3)^(3)

Let f(x)={((x^3+2x^2-x-2)/(x^3-2x^2-x+2), for |x| lt 1),(x^2+ax+b, for |x| ge 1):} be continuous for all x . Now answer the question:The values of a and b are given by (A) a=-8/3,b=-4/3 (B) a=4/3,b=-8/3 (C) a=-4/3,b=-8/3 (D) a=-4/3,b=8/3

Let f(x)={((x^3+2x^2-x-2)/(x^3-2x^2-x+2), for |x| lt 1),(x^2+ax+b, for |x| ge 1):} be continuous for all x . Now answer the question:The values of a and b are given by (A) a=-8/3,b=-4/3 (B) a=4/3,b=-8/3 (C) a=-4/3,b=-8/3 (D) a=-4/3,b=8/3

Check whether the following are quadratic equations : (i) (x-2)^2+1=2x-3 (ii) x(x+1)+8=(x+2)(x-2) (iii) x(2x+3)=x^2+1 (iv) (x+2)^3=x^3-4

3 ((3x-1) / (2x + 3))-2 ((2x + 3) / (3x-1)) = 5, x! = (1) / (3),-(3) / (2) )