Home
Class 11
MATHS
If tan alpha= 1/sqrt(x(x^2+x+1)), tan be...

If `tan alpha= 1/sqrt(x(x^2+x+1)), tan beta=sqrtx/sqrt(x^2+x+1)` and `tan gamma=sqrt(x^(-3)+x^(-2)+x^(-1))` then prove that `alpha+beta=gamma`

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan alpha = 1/sqrt(x(x^(2)+x+1)), tan beta = sqrt(x)/sqrt(x^(2) +x+1) and tan gamma = sqrt(x^(-3) + x^(-2) + x^(-1)) , then alpha + beta=

if tan alpha=(1)/(sqrt(x(x^(2)+x+1))),tan beta=(sqrt(x))/(sqrt(x^(2)+x+1)) and tan gamma=sqrt(x^(-3)+x^(-2)+x^(-1)) then alpha+beta=

If tan alpha = (1)/(sqrt(x(x^(2)+x+1))), tan beta = (sqrt(x))/(sqrt(x^(2)+x+1)) and tan gamma = sqrt(x^(-3)+x^(-2)+x^(-1)) then alpha+beta =

if tanalpha=1/(sqrt(x(x^2+x+1))), tanbeta=(sqrtx)/(sqrt(x^2+x+1) and tangamma=sqrt(x^-3+x^-2+x^-1) then alpha+beta=

If tan A= 1/(sqrt(x(x^2+x+1))), tan B = sqrtx/(sqrt (x^2+ x+ 1)) and tan C = sqrt(x^(-3)+x^(-2)+x^(-1)) , prove that A+B=C.

If tan alpha = 1/sqrt(x(x^2+x+1)),tan beta=sqrtx/sqrt(x^2+x+1) and tan gamma=sqrt(1/x^3+1/x^2+1/x) be such that lalpha+mbeta+ngamma=0 then the value of l^3+m^3+n^3-3lmn is

If tan alpha=(1)/(sqrt(x(x^(2)+x+1))),tan beta=(sqrt(x))/(sqrt(x^(2)+x+1)) and tan gamma=sqrt((1)/(x^(3))+(1)/(x^(2))+(1)/(x)) be such that l alpha+m beta+n gamma=0 then the value of l^(3)+m^(3)+n^(3)-3lmn is

If tan alpha = (1)/(sqrt (x (x ^(2) + x + 1))). tan beta = (sqrtx)/(sqrt (x ^(2) + x +1))and tan y = (x ^(-3) + x ^(-2)+ x ^(-1)) ^(1//2), then for x gt 0

If tan alpha=(x)/(x+1) and tan beta=(1)/(2x+1), then alpha+beta is