Home
Class 11
MATHS
X^(^^)y=e^(Lambda)x-y," prove that "dy/d...

X^(^^)y=e^(Lambda)x-y," prove that "dy/dx=log x/(log xe)^(^^)2

Promotional Banner

Similar Questions

Explore conceptually related problems

"If "x^(y)=e^(x-y)," prove that "(dy)/(dx)=(log x)/((1+log x)^(2)).

"If "x^(y)=e^(x-y)," prove that "(dy)/(dx)=(log x)/((1+log x)^(2)).

If x^(y)=e^(x-y), prove that (dy)/(dx)=(log x)/((1+log x)^(2))

If x^(y)=e^(x-y), prove that (dy)/(dx)=(log x)/((1+log x)^(2))

If x^y = e^(x-y) , prove that dy/dx = (logx)/({log(xe)}^2)

x^(y)=e^(x-y) so,prove that (dy)/(dx)=(log x)/((1+log x)^(2))

If x^(y)=e^(x-y), Prove that (dy)/(dx)=(log x)/((1+log x)^(2))

If y log x=x-y prove that (dy)/(dx)=(log x)/((1+log x)^(2))

If x=e^(x/y), prove that (dy)/(dx)=(x-y)/(x log x)