Home
Class 11
MATHS
[" 48"quad [0" (1) "t^(2)-3,2t^(4)+3t^(3...

[" 48"quad [0" (1) "t^(2)-3,2t^(4)+3t^(3)-2t^(2)-9t-12],[" (ii) "x^(2)+3x+1,3x^(4)+5x^(3)-7x^(2)+2x+2]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Check whether the first polynomial is factor of Second polynomial by dividing: t^2-3,2t^(4)+3t^(3)-2t^(2)-9t-12 (ii) x^(2)+3x+1,3x^(4)+5x^(3)-7x^(2)+2x+2 (iii) x^(3)-3x+1,x^(5)-4x^(3)+x^(2)+3x+1

Rewrite each of the following polynomials in standard form. (i) x-2x^(2)+8+5x^(3) (ii) (2)/(3)+4y^(2)-3y+2y^(3) (iii) 6x^(3)+2x-x^(5)-3x^(2) (iv) 2+t-3t^(3)+t^(4)-t^(2)

FInd (dy)/(dx) If x=2t^(2)+17t-1,y=3t^(4)-8t^(2)+9

Differentiate w.r.t. time. (i) y=t^(2) " " (ii) x=t^(3//2)" " (iii) y=(1)/(sqrt(t)) (iv) x=4t^(3) " " (v) y=2sqrt(t) " " (vi) y=2t^(2)+t-1 (vii) y=3sqrt(t)+(2)/(sqrt(t)) (viii) y=t^(3)sin t " " (ix) x=te^(t) (x) x= sqrt(t)(1-t)

Find the value of each of the following polynomials for the indicated value of variables: (i) p(x) = 4x ^(2) - 3x + 7 at x =1 (ii) q (y) = 2y ^(3) - 4y + sqrt11 at y =1 (iii) r (t) = 4t ^(4) + 3t ^(3) -t ^(2) + 6 at t =p, t in R (iv) s (z) = z ^(3) -1 at z =1 (v) p (x) = 3x ^(2) + 5x -7 at x =1 (vi) q (z) = 5z ^(3) - 4z + sqrt2 at z =2

Find the vaoue of each of the folllowing polynomials for the indicated value of variables: (i) p(x) = 4x ^(2) - 3x + 7 at x =1 (ii) q (y) = 2y ^(3) - 4y + sqrt11 at y =1 (iii) r (t) = 4t ^(4) + 3t ^(3) -t ^(2) + 6 at t =p, t in R (iv) s (z) = z ^(3) -1 at z =1 (v) p (x) = 3x ^(2) + 5x -7 at x =1 (vii) q (z) = 5z ^(3) - 4z + sqrt2 at z =2

Find the vaoue of each of the folllowing polynomials for the indicated value of variables: (i) p(x) = 4x ^(2) - 3x + 7 at x =1 (ii) q (y) = 2y ^(3) - 4y + sqrt11 at y =1 (iii) r (t) = 4t ^(4) + 3t ^(3) -t ^(2) + 6 at t =p, t in R (iv) s (z) = z ^(3) -1 at z =1 (v) p (x) = 3x ^(2) + 5x -7 at x =1 (vii) q (z) = 5z ^(3) - 4z + sqrt2 at z =2

Find the vaoue of each of the folllowing polynomials for the indicated value of variables: (i) p(x) = 4x ^(2) - 3x + 7 at x =1 (ii) q (y) = 2y ^(3) - 4y + sqrt11 at y =1 (iii) r (t) = 4t ^(4) + 3t ^(3) -t ^(2) + 6 at t =p, t in R (iv) s (z) = z ^(3) -1 at z =1 (v) p (x) = 3x ^(2) + 5x -7 at x =1 (vii) q (z) = 5z ^(3) - 4z + sqrt2 at z =2