Home
Class 12
MATHS
int(((x)/(e))^(x)+((e)/(x))^(x))log(e)xd...

int(((x)/(e))^(x)+((e)/(x))^(x))log_(e)xdx=

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(1)^(e)(((x)/(e))^(2x)+((e)/(x))^(x))log_(e)xdx is equal to (A)e-(1)/(2e^(2))-(1)/(2)(B)e-(1)/(2e^(2))+(1)/(2)(C)e^(3)-(1)/(2e^(2))-(1)/(2)(D) none of these ^(2)

int{((x)/(e))^(x)+((e)/(x))^(x)}log_(e)^(x)dx=

The integral int_(1)^(e){((x)/(e))^(2x)-((e)/(x))^(x)} "log"_(e)x dx is equal to

int[((x)/(e))^(x)+((e)/(x))^(x)]ln xdx

int[((x)/(e))^(x)+((e)/(x))^(x)]ln xdx=A((x)/(e))^(x)+B((e)/(x))^(x)+c then the value of A+B is

Evaluate: int(((e)/(x))^(x)+((x)/(e))^(x))ln xdx

The value of int ((e^(x)-e^(-x))dx)/((e^(x)+e^(-x))log(e^(x)+e^(-x))) is equal to -

int e^(log_(e)x)dx

int(e^(exlog_(e)x)+(log_(e)x)(e^(exlog_(e)x)))dx=...+c

int(e^xdx)/(1+e^(x))