Home
Class 12
MATHS
A straight line x=y+2 touches the circle...

A straight line `x=y+2` touches the circle `4(x^2+y^2)=r^2` , The value of r is:

Promotional Banner

Similar Questions

Explore conceptually related problems

If the straight line 3x + 4y = k touches the circle x^2+y^2-10x = 0, then the value of k is:

If the straigth line y=mx+c touches the circle x^2+y^2-4y=0 ,then the value of c will be

If the straight line 3x + 4y = k touches the circle x^(2) + y^(2) = 16 x , then the values of k are

If the straight line ax + by = 2 ; a, b!=0 , touches the circle x^2 +y^2-2x = 3 and is normal to the circle x^2 + y^2-4y = 6 , then the values of 'a' and 'b' are ?

If the straight line ax + by = 2 ; a, b!=0 , touches the circle x^2 +y^2-2x = 3 and is normal to the circle x^2 + y^2-4y = 6 , then the values of 'a' and 'b' are ?

If the straight line ax+by=2;a,b!=0 touches the circle x^(2)+y^(2)-2x=3 and is normal to the circle x^(2)+y^(2)-4y=6 ,then the values of 'a' and 'b'are?

If the line y=sqrt(3)x+k touches the circle x^2+y^2=16 , then find the value of kdot

If the line y=sqrt(3)x+k touches the circle x^2+y^2=16 , then find the value of kdot

For what value of c, the straight line 3x + y - c = 0 touches the circle x ^2 + y ^2 + 2x - 6y + 6 = 0 ?

The pole of a straight line with respect to the circle x^2+y^2=a^2 lies on the circle x^2+y^2=9a^2 . If the straight line touches the circle x^2+y^2=r^2 , then :