Home
Class 9
MATHS
Find the value of (sqrt(32)+sqrt(48))/(...

Find the value of `(sqrt(32)+sqrt(48))/(sqrt(8)+sqrt(12))`

Text Solution

Verified by Experts

`(sqrt32+sqrt48)/(sqrt8+sqrt12) = (sqrt(8**4)+sqrt(12**4))/(sqrt8+sqrt12) `
`=(2(sqrt8+sqrt12))/(sqrt8+sqrt12) = 2`
`:. (sqrt32+sqrt48)/(sqrt8+sqrt12) = = 2`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of (sqrt2 + sqrt8)^(2)

Find the value of frac(sqrt 64) (sqrt 8)

2sqrt(8)+5sqrt(32)

32.Give that sqrt(3)=1.732 find the value of sqrt(75)+(1)/(2)sqrt(48)-sqrt(192)

Find the value of sqrt(48)-sqrt(192)+sqrt(75)

The value of sqrt(( sqrt(12) -sqrt(8))(sqrt(3)+sqrt(2))/(5+sqrt(24)) is

The value of (sqrt(48)+\ sqrt(32))/(sqrt(27)+\ sqrt(18)) is (a) 4/3 (b) 4 (c) 3 (d) 3/4