Home
Class 12
MATHS
If un = int(logx)^n dx, then un+ n u(n-1...

If `u_n = int(logx)^n` dx, then `u_n+ n u_(n-1)` is equal to :

Promotional Banner

Similar Questions

Explore conceptually related problems

If u_n = 2cos n theta then u_1u_n - u_(n-1) is equal to

If U_(n) = int_0^(pi/4) tan^(n) x dx then u_(n)+u_(n-2) =

If U_(n)=2cos n theta, then U_(1)U_(n)-U_(n-1) is equal to -

If U_n=2 cosntheta then U_1U_n-U_(n-1) is equal to

If u_(n) = sin ^(n) theta + cos ^(n) theta, then 2 u_(6) -3 u_(4) is equal to

If u_(n)=int_(0)^((pi)/(2))x^(n)sin xdx then u_(10)+90u_(8) is equal to

If U_(n)=(1+(1)/(n^(2)))(1+(2^(2))/(n^(2)))^(2).............(1+(n^(2))/(n^(2)))^(n) m then lim_(n to oo)(U_(n))^((-4)/(n^(2))) is equal to

If u _(n) = int _(0) ^(pi//2) x ^(n) sin x dx, n in N then the value of u _(10) + 90 u _(s) is