Home
Class 11
MATHS
" 50.If "(log x)/(a^(2)+ab+b^(2))=(log y...

" 50.If "(log x)/(a^(2)+ab+b^(2))=(log y)/(b^(2)+bc+c^(2))=(log z)/(c^(2)+ca+a^(2))" ,then "

Promotional Banner

Similar Questions

Explore conceptually related problems

If log x(log x)/(a^(2)+ab+b^(2))=(log y)/(b^(2)+bc+c^(2))=(log z)/(c^(2)+ca+a^(2)) then x^(a-b)*y^(b-c)*z^(c-a)=

(log x)/(2a+3b-5c)=(log y)/(2b+3c-5a)=(log z)/(2c=3a-5b')

If (logx)/(2a+3b-5c)=(log y)/(2b+3c-5a)=(log z)/(2c=3a-5b') then xyz=

Prove that "log"_(a^(2))a " log"_(b^(2)) b" log_(c^(2))c = (1)/(8) .

If log(a+b+c) = log a + log b + log c , then prove that log ((2a)/(1-a^(2))+(2b)/(1-b^(2))+(2c)/(1-c^(2))) = log(2a)/(1-a^(2)) + log (2b)/(1-b^(2)) + log(2c)/(1-c^(2)) .

Prove that log(a^(2)/(bc))+log(b^(2)/(ca))+log(c^(2)/(ab))=0

Show that a^(log_(a^2)^(x))xxb^(log_(b^2)^(y))xxc^(log_(c^2)^(z))=sqrt(xyz)

If (1)/(log_(a)x) + (1)/(log_(b)x) = (2)/(log_(c)x) , prove that : c^(2) = ab .