Home
Class 11
MATHS
[" Whe "1f" tan "^(2)alpha tan^(2)beta t...

[" Whe "1f" tan "^(2)alpha tan^(2)beta tan^(2)gamma+tan^(2)alpha tan^(2)beta+tan^(2)beta tan^(2)gamma+tan^(2)gamma tan^(2)alpha=1" ,"],[" prove that "sin^(2)alpha+sin^(2)beta+sin^(2)gamma=1" ."]

Promotional Banner

Similar Questions

Explore conceptually related problems

If 2tan^(2)alpha tan^(2)beta tan^(2)gamma+tan^(2)alpha tan^(2)beta+tan^(2)beta tan^(2)gamma+tan^(2)gamma tan^(2)alpha=1 prove that sin^(2)alpha+sin^(2)beta+sin^(2)gamma=1

If 2 tan^2 alpha tan^2 beta tan^2 gamma+ tan^2 alpha tan^2 beta+ tan^2 beta tan^2 gamma+ tan^2 gamma tan^2 alpha=1 , prove that sin^2 alpha+ sin^2 beta+ sin^2 gamma =1 .

2tan ^ (2) alpha tan ^ (2) beta tan ^ (2) gamma + tan ^ (2) alpha tan ^ (2) beta + tan ^ (2) beta tan ^ (2) gamma + tan ^ (2) gamma tan ^ (2) alpha find the value of sin ^ (2) alpha + sin ^ (2) beta + sin ^ (2) gamma

If tan ^ (2) alpha tan ^ (2) beta + tan ^ (2) beta tan ^ (2) gamma + tan ^ (2) gamma tan ^ (2) alpha + 2tan ^ (2) alpha tan ^ (2 ) beta tan ^ (2) gamma = 1 then sin ^ (2) alpha + sin ^ (2) beta + sin ^ (2) gamma =

If tan^(2)alpha tan^(2)beta+tan^2betatan^(2)lamda+tan^(2)lambdatan^(2)alpha+2tan^(2)alpha tan^(2) beta tan^(2)lamda = 1 then sin^2alpha+sin^2beta+sin^2lamda =

If tan^2 alpha tan^2 beta + tan^2 beta tan^2 gamma + tan^2 gamma tan^2 alpha + 2 tan^2 alpha tan^2 beta tan^2 gamma = 1 then sin^2 alpha + sin^2 beta + sin^2 gamma =

If tan^2 alpha tan^2 beta + tan^2 beta tan^2 gamma + tan^2 gamma tan^2 alpha + 2 tan^2 alpha tan^2 beta tan^2 gamma = 1 then sin^2 alpha + sin^2 beta + sin^2 gamma =

Prove that: tan(alpha-beta)+tan(beta-gamma)+tan (gamma-alpha) = tan(alpha-beta) tan (beta-gamma) tan (gamma-alpha) .