Home
Class 12
MATHS
If (dx)/(dy)=(e^(y)-x), where y(0)=0, th...

If `(dx)/(dy)=(e^(y)-x)`, where y(0)=0, then y is expressed explicitly as

Promotional Banner

Similar Questions

Explore conceptually related problems

If (dy)/(dx)=(e^(y)-x)^(-1), where y(0)=0, then y is expressed explicitly as

If dy/dx=(e^y-x)^(-1), where y(0)=0 , then y is expressed explicitly as

If dy/dx=(e^y-x)^(-1), where y(0)=0 , then y is expressed explicitly as

If dy/dx=(e^y-x)^(-1), where y(0)=0 , then y is expressed explicitly as

If dy/dx=(e^y-x)^(-1), where y(0)=0 , then y is expressed explicitly as

If x=e^(y+e^(y+d)...oo), where x>0, then find (dy)/(dx)

The solution of (dy)/(dx)+y=e^(-x), y(0)=0 is

The solution of (dy)/(dx)+y=e^(-x), y(0)=0 is

The solution of (dy)/(dx)+y=e^(-x), y(0)=0 " is"

Let (dy)/(dx)=(6)/(x+y) where y(0)=0 then the value of y when x+y=6 is