Home
Class 12
MATHS
If xr = cos (pi/2^r) + i sin(pi/2^r) ,...

If `x_r = cos (pi/2^r) + i sin(pi/2^r) , z_t = cos(pi/3^t)+i sin (pi/3^t)` where `r= 1, 2, 3, ... and t = 1, 2, 3, ...)`, then the value of `(x_1 x_2 x_3........oo)^2 (z_1 z_2 z_3...oo)^4` is

Promotional Banner

Similar Questions

Explore conceptually related problems

z=(1-i)/(cos(pi/3)+i sin(pi/3))

If z_r=cos(pi/3^r)+i sin(pi/3^r) where r in N then z_1.z_2.z_3...oo=

If z_r=cos(pi/(3^r))+isin(pi/(3^r)),r=1,2,3, , prove that z_1z_2z_3 .... z_oo=i

If x_r = cos(pi/3^r)+isin (pi/3^r) : prove that x_1x_2x_3 ....upto infinity=i

If z_r=cos(pi/(3^r))+isin(pi/(3^r)),r=1,2,3, , prove that z_1z_2z_3 z_oo=idot

If z= cos (pi)/(3) - i sin (pi)/(3) then z^(2)-z+1 is equal to

If x_(r)=cos. (pi)/(2^(r))+ isin. (pi)/(2^(r)) , then x_(1)x_(2)x_(3)....oo=