Home
Class 13
MATHS
" (iv) "8((3^(x-2))/(3^(x)-2^(x)))>1+((2...

" (iv) "8((3^(x-2))/(3^(x)-2^(x)))>1+((2)/(3))^(x)

Promotional Banner

Similar Questions

Explore conceptually related problems

(7)/((x-2)(x-3))+(8)/(x-3)+1<0

" If (3x^(3)-8x^(2)+10)/((x-1)^(4))=(3)/(x-1)+(1)/((x-1)^(2))-(7)/((x-1)^(3))+(k)/((x-1)^(2)) then "k=

(2^((3x-1)/(x-1)))^((1)/(3))<8^((x-3)/(3x-7))

Check whether the following are quadratic equations : (1) (x-3)^(2)=x(2x-5) (2) (2x-3)(8x+1) = (4x+5)(4x-5) (3) (5x+3)(x-2)=(4x+3)(2x-1) (4) (2x+5)^(3)=8(x-1)^(3) (5) x^(2)+7x-8=x(x+5) (6) x^(3)+9x^(2)-7x+2=(x+3)^(3)

Solve the inequality if f(x)=((x-2)^(10)(x+1)^(3)(x-((1)/(2)))^(5)(x+8)^(2))/(x^(24)(x-3)^(3)(x+2)^(5))is>0 or <0

Take away ((8)/(5)x^(2) - (2)/(3)x^(3) + (3)/(2)x -1) from ((x^(3))/(5) - (3)/(2)x^(2) + (2)/(3)x + (1)/(4))

Check whether the following are quadratic equations : (1) (x-1)^(2)=2(x-3) (2) x^(2)-2x=(-2)(3-x) (3) (x-2)(x+1)=(x-1)(x+3) (4) (x-3)(2x+1)=x(x+5) (5) (2x-1)(x-3)=(x+5)(x-1) (6) x^(2)+3x+1=(x-2)^(2) (7) (x+2)^(3)=2x(x^(2)-1) (8) x^(3)-4x^(2)-x+1=(x-2)^(3)

Check whether the following are quadratic equations : (1) (x-2)^(2)+1=2x-3 (2) x(x+1)=8=(x+2)(x-2) (3) x(2x+3)=x^(2)+1 (4) (x+2)^(3) = x^(3)-4

Factorise: (1)2x^(2)-x-6=0(2)a^(3)-0.216 (3) (x^(2)-3x)^(2)-8(x^(2)-3x)-20