Home
Class 12
MATHS
Let l1 be the length of the latus rectum...

Let `l_1` be the length of the latus rectum of the parabola `9x^2-6x + 36y +19 = 0`. Let `l_2`, be the length of the latus rectum of the hyperbola `9x2 - 16y^2-18x - 32y-151 = 0`. Let `n` be the unit digit in the product of `l_1 and l_2`. The number of terms in the binomial expansion of `(1+x)^n` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The latus - rectum of the hyperbola : 9x^2-16y^2-18x-32y-151=0 is :

The length of the latus rectum of the hyperbola 9x^(2) -16y^(2) +72x -32y- 16 =0 is

The length of the latus rectum of the hyperbola 9x^(2) -16y^(2) +72x -32y- 16 =0 is

The latus rectum of parabola 9x^2-6x+36y+19=0 is:

The length of the latus rectum of the parabola 3x^(2)-9x+5y-2=0 is

The equations of the latus recta of the hyperbola 9x^(2) -16y^(2) -18x -32y -151 =0 are

The equations of the latus recta of the hyperbola 9x^(2) -16y^(2) -18x -32y -151 =0 are

The latus rectum of the hyperbola 16 x^2-9y^2=144 is

The length of latus-rectum of parabola x^(2) = - 16 y is :