Home
Class 11
MATHS
If x^y=e^(x-y), then show that dy/dx=(lo...

If `x^y=e^(x-y)`, then show that `dy/dx=(logx)/(1+logx)^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

IF x^y=e^(x-y) then show that (dy)/(dx)=(logx)/[log(xe)]^2 .

If x^y=e^(x-y), show that (dy)/(dx)=(logx)/({log(x e)}^2)

If x^y = e^(x-y) then prove that (dy)/(dx)=logx/(1+logx)^2 .

If x^y=e^(x-y), Prove that (dy)/(dx)=(logx)/((1+logx)^2)

If x^y=e^(x-y) , prove that (dy)/(dx)=(logx)/((1+logx)^2)

If x^(y)=e^(x-y) then prove that (dy)/(dx)=(logx)/((1+logx)^(2))

If x^y=e^(x-y), Prove that (dy)/(dx)=(logx)/((1+logx)^2)

If x^y=e^(x-y) , prove that (dy)/(dx)=(logx)/(1+logx)^2