Home
Class 11
MATHS
Prove that formula cos(A-B) = cosA.cosB+...

Prove that formula `cos(A-B) = cosA.cosB+sinA.sinB` with the help of the formula `sin(A+B) = sinA.cosB+cosA.sinB`

Promotional Banner

Similar Questions

Explore conceptually related problems

sin(A-B)=sinA cos B-cosA sinB

(cosA+cosB)^2+(sinA-sinB)^2 is equal to

Prove that: sin(A+B)+cos(A-B)=(sinA+cosA)(sinB+cosB)

Prove that (sin A+sinB)/(cosB-cosA)=(cos A+cosB)/(sinA-sinB) .

If A=B=45^(@) , then justify sin(A+B)=sinA cosB+cosA sinB.

(sinA-sinB)/(cosA+cosB) is equal to

Using the fact that cos (A + B) = cosA cosB - sinA sin B and the differentiation , obtain the sum formula for sine.

Prove that (sinA+sinB)/(cosA+cosB)=tan((A+B)/2)

Prove that (sinA + sinB)/(cosA + cosB)= tan((A+B)/2)

Prove that (cosA-cosB)^2+(sinA-sinB)^2=4sin^2((A-B)/2)