Home
Class 11
MATHS
Consider the set of eight vector V={a ha...

Consider the set of eight vector `V={a hat i+b hat j+c hat k ; a ,bc in {-1,1}}dot` Three non-coplanar vectors can be chosen from `V` is `2^p` ways. Then `p` is_______.

Promotional Banner

Similar Questions

Explore conceptually related problems

Consider the set of eight vector V={ahat i+bhat j+chat k;a,bc in{-1,1}} Three non-coplanar vectors can be chosen from V is 2^(p) ways.Then p is

Consider th set of eight vectors V = {a hat(i) + b hat(j) + c hat(k): a, b, c in {-1, 1}} . Three non-coplanar vectors can be chosen from V in 2P ways Then p is

Consider the set of eight vectors V[ahati+bhatj+chatk:a,b,c in {1-1}] . Three non-coplanar vectors cann be chosen from V in 2^(p) ways, then p is

State whether the vectors hat i, hat j and hat k are coplanar or non-coplanar.

The value of p so that vectors 2hat i-hat j+hat k , hat i+2hat j-3hat k and 3hat i+phat j+5hat k are coplanar is

If the vectors 2a hat i+b hat j+c hat k ,b hat i+c hat j+2a hat ka n dc hat i+2a hat j+b hat k are coplanar vectors and a ,b!=c in R , then straight lines a x+b y+c=0 always pass through: (1,2) b. (2-1) c. (2,1) d. (1,-2)

Let vec v_1= hat i+ hat j+ hat k & vec v_2=a hat i+b hat j+c hat k be two vectors, where a ,b ,c belong to the set {-2,-1,0,1,2} . Then find the number of non-zero vectors vec v_2 for which vec v_1 . vec v_2=0

If vec V_(1)=hat i+hat j+hat k;vec V_(2)=ahat i+bhat j+chat k where a,b,c in{-2,-1,0,1,2} then the number of non-zero vectors vec V_(2) which perpendicular to (vec V_(1))/(18) is

Show that the vectors -hat(i) + hat(j) - hat(k), hat(i) + hat(j) + hat(k) and hat(i) + hat(k) are coplanar.