Home
Class 11
MATHS
If pi/2 < alpha < 3 pi/2 then the modulu...

If pi/2 < `alpha` < 3 pi/2 then the modulus argument of `(1+cos 2alpha)+i sin2alpha`

Promotional Banner

Similar Questions

Explore conceptually related problems

The argument of (1-i)/(1+i) is a. -pi/2 b. pi/2 c. (3pi)/2 d. (5pi)/2

If f(x) is continuous at x = (pi)/2 , where f(x) = (sinx)^(1/(pi-2x)), "for" x != (pi)/2 , then f((pi)/(2)) =

If f(x) is continuous at x = (pi)/2 , where f(x) = (sinx)^(1/(pi-2x)), "for" x != (pi)/2 , then f((pi)/(2)) =

If : f(x) {: ((1-sin x)/(pi-2x)", ... " x != pi//2 ),(=lambda ", ... " x = pi//2):} is continuous at x = pi//2 , then : lambda =

If f(x) is continuous at x=pi/2 , where f(x)=(3^(x- pi/2)-6^(x- pi/2))/(cos x) , for x != pi/2 , then f(pi/2)=

sin(pi/2^2009)cos(pi/2^2009)cos(pi/2^2008).....cos(pi/2^2) is

sin(pi/2^2009)cos(pi/2^2009)cos(pi/2^2008).....cos(pi/2^2) is

The value of (cos"" (pi)/(2)+isin ""(pi)/(2))(cos ((pi)/(2^2))+isin((pi)/(2^2))) (cos ((pi)/(2^3))+isin((pi)/(2^3)))" ………."oo is

The function f(x)=tan^(-1)(sinx+cosx) is an increasing function in (-pi/2,pi/4) (b) (0,pi/2) (-pi/2,pi/2) (d) (pi/4,pi/2)

The function f(x)=tan^(-1)(sinx+cosx) is an increasing function in (-pi/2,pi/4) (b) (0,pi/2) (-pi/2,pi/2) (d) (pi/4,pi/2)