Home
Class 11
MATHS
8. Prove that lim(x->1^+)(1/(x-1)) !=li...

8. Prove that `lim_(x->1^+)(1/(x-1)) !=lim_(x->1^-) (1/(x-1))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that lim_(xrarroo)(1+1/x)^x=e

Prove that: lim_(x to0)log(1+sinx)/(x)=1

Prove that : lim_(x to 0^(+))x/abs(x)=1

Find Lim_(x to 1^+) (1/(x-1)) = ?

Prove that : lim_(x to 0^(-))x/abs(x)=-1 .

Prove that : lim_(x rarr 0^+)(x)/(|x|)=1 .

Prove that : lim_(x rarr 0^-)(x)/(|x|)= -1 .

lim_(x rarr1)(1)/(|1-x|)=

Evaluate lim_(x to 1) x^((1)/(x-1))