Home
Class 10
MATHS
" 4."x(1+y^(2))dx+y(1+x^(2))dy=0...

" 4."x(1+y^(2))dx+y(1+x^(2))dy=0

Promotional Banner

Similar Questions

Explore conceptually related problems

x(1+y^(2))dx+y(1+x^(2))dy=0 at (0, 0)

x(2y-1)dx+(x^(2)+1)dy=0

Solve the differential equation (1+x)(1+y^(2))dx+(1+y)(1+x^(2))dy =0.

y(1+x^(2))dy=x(1+y^(2))dx

y(1-x^(2))dy=x(1+y^(2))dx

The solution of the differential equation (1+x^(2))(1+y)dy+(1+x)(1+y^(2))dx=0

If y=sin^(-1)x then prove that (1-x^(2))(d^(y))/(dx^(2))-x(dy)/(dx)=0

Find dy/dx x^(1/2) y^(-1/2) + x^(3/2) y^(-3/2) = 0

If e^(y)(x+1)=1, show that (d^(2)y)/(dx^(2))=((dy)/(dx))^(2) If y=sin(2sin^(-1)x), show that ((1-x^(2))d^(2y))/(dx^(2))=x(dy)/(dx)-4y

If (1+x^(2))(dy)/(dx)=1+y^(2),y(0)=1, then y(2)=