Home
Class 12
MATHS
[bar(a)timesbar(b)bar(a)timesbar(c)bar(d...

[bar(a)timesbar(b)bar(a)timesbar(c)bar(d)]=

Promotional Banner

Similar Questions

Explore conceptually related problems

bar(a),bar(b),bar(c) are vectors such that [bar(a)bar(b)bar(c)]=4 then [bar(a)timesbar(b) bar(b)timesbar(c) bar(c)timesbar(a)] is (A) 16 (B) 64 (C) 4 (D)8

bar(a),bar(b),bar(c) represent three concurrent edges of a rectangular parallelepiped whose lengths are 4,3 ,2 units respectively then find value of (bar(a)+bar(b)+bar(c))*(bar(a)timesbar(b)+bar(b)timesbar(c)+bar(c)timesbar(a))

Let bar(a),b,bar(c) be three non coplanar unit vectors such that angle between any two of them is (pi)/(3) and bar(a)timesbar(b)+bar(b)timesbar(c)=pbar(a)+qbar(b)+rbar(c) then (p-r)^(2) =

If bar(a),bar(b),bar(c) are three coterminous edges of a parallelopiped of volume 6 then value of [bar(a)timesbar(b)quad bar(a)timesbar(c)quad bar(b)timesbar(c)]=

Three vectors bar(a) , bar(b) and bar(c) are such that [bar(a)timesbar(b)=3bar(a)timesbar(c) .Also |vec a|=|bar(b)|=1 and |bar(c)|=(1)/(3) .If the angle between bar(b) and bar(c) is 60^(@) ,then.

Let (a,b,c) be three vectors such that |bar(a)|=1 and |bar(b)|=1 , |bar(c)|=2 , if bar(a)times(bar(a)timesbar(c))+bar(b)=bar(0) , then Angle between bar(a) and bar(c) can be

Let a,b, c be three vectors such that |bar(a)|=1,|bar(b)|=2 and if bar(a)times(bar(a)timesbar(c))+bar(b)=bar(0), then angle between bar(a) and bar(c) can be.

If bar(a)=(3hat i-hat j)/(sqrt(10)),bar(b)=(hat i+3hat j+hat k)/(sqrt(11)), then the value of (2bar(a)+bar(b))*[(bar(a)timesbar(b))times(bar(a)-3bar(b))]

Let bar(a),bar(b),bar(c) be three non-zero vectors such that bar(a)+bar(b)+bar(c)=0 .Then lambda(bar(a)timesbar(b))+bar(c)timesbar(b)+bar(a)timesbar(c)=0 where lambda is

If bar(a)=hat i+hat j+2hat k, bar(b)=hat i+2hat j+2hat k and |bar(c)_(1)|=1 ,then the maximum value of [bar(a)timesbar(b) quad bar(b)timesbar(c) quad bar(c)timesbar(a)] is