Home
Class 14
MATHS
" 10."sqrt((27)/(1))-(9)/(sqrt(3))-root(...

" 10."sqrt((27)/(1))-(9)/(sqrt(3))-root(4)((1)/(9))+root(6)((1)/(27))

Promotional Banner

Similar Questions

Explore conceptually related problems

sqrt(27)-(9)/(sqrt(3))-root(4)((1)/(9))+root(6)((1)/(27))

root(3)(1/27) =___

The value of log_((9)/(4))((1)/(2sqrt(3))sqrt(6-(1)/(2sqrt(3))sqrt(6-(1)/(2sqrt(3))sqrt(6-(1)/(2sqrt(3)))))...oo) is

The value of log_((9)/(4))((1)/(2sqrt(3))sqrt(6-(1)/(2sqrt(3))sqrt(6-(1)/(2sqrt(3))sqrt(6-(1)/(2sqrt(3)))))...oo) is

The value of log_((9)/(4))((1)/(2sqrt(3))sqrt(6-(1)/(2sqrt(3))sqrt(6-(1)/(2sqrt(3))sqrt(6-(1)/(2sqrt(3)))))...oo) is

The following are the steps involved in finding the least amont sqrt(3),root(3)(4) and root(6)(15) . Arrange them in sequential order. (A) therefore root(6)(15) is the smallest (B) therefore 3^(1//2)=3^(3//6), 4^(1//3)=4^(2//6), 15^(1//6)=15^(1//6) (C)The LCM fo the denominators of the exponents is 6 (D) sqrt(3)=3^(1//2), root(3)(4)=4^(1//3), root(6)(15)=15^(1//6) (E) therefore sqrt(3)=root(6)(27), root(3)(4)=root(6)(16)root(6)(15)=root(6)(15)

Evaluate: int((1)/(root(3)(x)+root(4)(x))+(ln(1+root(6)(x))/(root(3)(x)+sqrt(x)))dx