Home
Class 11
MATHS
" (iv) "A=[[1,1,1],[1,2,-3],[2,-1,3]]," ...

" (iv) "A=[[1,1,1],[1,2,-3],[2,-1,3]]," show that "A^(3)-6A^(2)+5A+111=0." Hence find "A^(-1)

Promotional Banner

Similar Questions

Explore conceptually related problems

For the matrix A= [[1,1,1],[1,2,-3],[2,-1,3]] show that A^3-6A^2+5A+11I=0. Hence, find A^(-1)

For the matrix A = [[1,1,1],[1,2,-3],[2,-1,3]] , show that A^3 - 6A^2 + 5A + 11I = 0 . Hence find A^-1 .

For the matrix A = [[1,1,1],[1,2,-3],[2,-1,3]] Show that A^3-6A^2+5A+11I=O Hence, find A^-1

A={:[( 1,1,1),(1,2,-3),(2,-1,3)]:} Show that A^(3) - 6A^(2) +5A +11 I =O. Hence , find A^(-1)

A={:[( 1,1,1),(1,2,-3),(2,-1,3)]:} Show that A^(3) - 6A^(2) +5A +11 I =O. Hence , find A^(-1)

A={:[( 1,1,1),(1,2,-3),(2,-1,3)]:} Show that A^(3) - 6A^(2) +5A +11 I =O. Hence , find A^(-1)

Solve the following equations by matrix method. For the matrix A = [(1,1,1),(1,2,-3),(2,-1,3)] . Show that A^(3) - 6A^(2) + 5A + 11 I = 0 . Hence, find A^(-1) .