Home
Class 12
MATHS
tan^(-1)((sqrt(x)-x)/(1+x^(3/2)))...

tan^(-1)((sqrt(x)-x)/(1+x^(3/2)))

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: i) tan^(-1)(sqrt(x)+sqrt(y))/(1-sqrt(xy))=tan^(-1)sqrt(x)+tan^(-1)sqrt(y) ii) tan^(-1)(x+sqrt(x))/(1-x^(3//2))=tan^(-1)x+tan^(-1)sqrt(x) iii) tan^(-1)(sinx)/(1+cosx)=x/2

tan^(-1)((sqrt(x)(3-x))/(1-3x))

(d)/(dx)[tan^(-1)((sqrt(x)(3-x))/(1-3x))]=(1)/(2(1+x)sqrt(x)) (b) (3)/((1+x)sqrt(x))(2)/((1+x)sqrt(x)) (d) (3)/(2(1+x)sqrt(x))

d/(dx)[tan^(-1)((sqrt(x)(3-x))/(1-3x))]= 1/(2(1+x)sqrt(x)) (b) 3/((1+x)sqrt(x)) 2/((1+x)sqrt(x)) (d) 3/(2(1+x)sqrt(x))

d/(dx)[tan^(-1)((sqrt(x)(3-x))/(1-3x))]= (a) 1/(2(1+x)sqrt(x)) (b) 3/((1+x)sqrt(x)) 2/((1+x)sqrt(x)) (d) 3/(2(1+x)sqrt(x))

d/(dx)[tan^(-1)((sqrt(x)(3-x))/(1-3x))] is (a) 1/(2(1+x)sqrt(x)) (b) 3/((1+x)sqrt(x)) (c) 2/((1+x)sqrt(x)) (d) 3/(2(1+x)sqrt(x))

d/(dx)[tan^(-1)((sqrt(x)(3-x))/(1-3x))] is (a) 1/(2(1+x)sqrt(x)) (b) 3/((1+x)sqrt(x)) (c) 2/((1+x)sqrt(x)) (d) 3/(2(1+x)sqrt(x))

"tan^(-1)"((sqrt(x)-x)/(1+sqrt(x^(3))))"

Prove that tan^(-1) ((3x-x^(3))/(1-3x^(2)))=tan^(-1)x +"tan"^(-1)(2x)/(1-x^(2)), |x| lt (1)/(sqrt(3)) .