Home
Class 9
MATHS
p(x)=2x^(3)-9x^(2)+x+15,g(x)=2x-3...

p(x)=2x^(3)-9x^(2)+x+15,g(x)=2x-3

Promotional Banner

Similar Questions

Explore conceptually related problems

Using the remainder theorem , find the remainder , when p (x) is divided by g (x) , where p(x)=2x^(3)-7x^(2)+9x-13,g(x)=x-3 .

Verify the division algorithm for the polynomials p(x)=2x^(4)-6x^(3)+2x^(2)-x+2andg(x)=x+2 . p(x)=2x^(3)-7x^(2)+9x-13,g(x)=x-3 .

f(x)=2x^(3)-9x^(2)+x+12,g(x)=3-2x

Use the factor theorem, to determine whether g(x) is a factor of p(x) in each of the following cases : (i) p(x)=2x^(3)+x^(2)-2x-1,g(x)=x+1 (ii) p(x)=x^(3)+3x^(2)+3x+1,g(x)=x+2 (iii) p(x)=x^(3)-4x^(2)+x+6,g(x)=x-3

Find quotient and remainder p(x)=x^(3)-6x^(2)+9x+3,g(x)=x-1

Use factor theorem to verify in the following that q(x) is a factor of p(x)=2x^3-9x^2+x+12,q(x)=2x-3 .

Using factor theorem , show that g (x) is a factor of p(x) , when p(x)=2x^(3)+9x^(2)-11x-30,g(x)=x+5

f(x)=9x^(3)-3x^(2)+x-5,g(x)=x-(2)/(3)

Using the remainder theorem , find the remainder , when p (x) is divided by g (x) , where p(x)=x^(3)-6x^(2)+9x+3,g(x)=x-1 .

Using the remainder theorem , find the remainder , when p (x) is divided by g (x) , where p(x)=2x^(3)+x^(2)-15x-12,g(x)=x+2 .