Home
Class 12
MATHS
If y=xln((a x)^(-1)+a^(-1)) prove that x...

If `y=xln((a x)^(-1)+a^(-1))` prove that `x(x+1)(d^2y)/(dx^2)+(dy)/(dx)=y=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=x ln((ax)^(-1)+a^(-1)) prove that x(x+1)(d^(2)y)/(dx^(2))+(dy)/(dx)=y=1

Ify=x log[(ax)^(-1)+a^(-1)], prove that x(x+1)(d^(2)y)/(dx^(2))+x(dy)/(dx)=y-1

If y=sin^(-1) x, prove that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)=0

If e^y(x+1)=1 , prove that (d^2y)/(dx^2)=((dy)/(dx))^2

If y=(cos^(-1)x)^(2) prove that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)-2=0

If y= sin^(-1)x then prove that (1-x^(2))(d^(2)y)/(dx^(2))-x (dy)/(dx)=0

If y=e^(msin^(-1)x) prove that (1-x^2)((d^2y)/dx^2)-x(dy)/dx=m^2y

If y=log\ [x+sqrt(x^2+1)] , prove that (x^2+1)(d^2\ y)/(dx^2)+x(dy)/(dx)=0

If y=log\ [x+sqrt(x^2+1)] , prove that (x^2+1)(d^2\ y)/(dx^2)+x(dy)/(dx)=0

If y=tan^(-1)x, prove that (1+x^(2))(d^(2)y)/(dx^(2))+2x(dy)/(dx)=0