Home
Class 10
MATHS
If a+b-c=14 then find the value of 2b^2...

If `a+b-c=14` then find the value of `2b^2c^2+2c^2a^2+2a^2b^2-a^4-b^4-c^4`

Text Solution

Verified by Experts

`=4a^2b^2-(a^4+b^4+c^4-2c^2a^2-2b^2c^2+2a^2b^2)`
`=(2ab)^2-(a^2=b^2-c^2)^2`
`=(2ab-(a^2+b^2-c^2))(2ab+a^2+b^2-c^2)`
`=(2ab-a^2-b^2+c^2)(2ab+a^2+b^2-c^2)`
`=(c^2-(a-b)^2)((a+b)^2-c^2)`
`=(c-(a-b))(c+(a-b))((a+b)-c)(a+b+c)`
`=(c-a+b)(c+a-b)(a+b-c)(a+b+c)`
`a+b-c=14`
...
Promotional Banner

Similar Questions

Explore conceptually related problems

If b+c-a=7, c+a-b=3, a+b-c=-10 then find the value 2b^2c^2+2a^2b^2+2c^2a^2-a^4-b^4-c^4

Prove that If a=2, b=3, c=5. Then prove that 2b^2c^2+2c^2a^2+2a^2b^2-a^4-b^4-c^4=0

If a+2b+3c=4, then find the least value of a^2+b^2+c^2dot

If a+2b+3c=4, then find the least value of a^2+b^2+c^2dot

If a+2b+3c=4, then find the least value of a^2+b^2+c^2dot

If a+2b+3c=4, then find the least value of a^2+b^2+c^2dot

If a+2b+3c=4, then find the least value of a^2+b^2+c^2dot

Factorise : 2b^(2)c^(2)+2c^(2)a^(2)+2a^(2)b^(2)-a^(4)-b^(4)-c^(4)

If a+2b+3c=4, then find the least value of a^(2)+b^(2)+c^(2)