Home
Class 12
MATHS
The number of ordered pair(s) (x,y) whic...

The number of ordered pair(s) (x,y) which satisfy `y=tan^(-1) tan x` and `16(x^2+y^2)-48 pi x +16 pi y +31 pi^2=0` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the number of real ordered pair(s) (x, y) for which: 16^(x^2+y) + 16^(x+y^2) = 1

The number of ordered pair(s) (x .y) satisfying the equationssin x*cos y=1 and x^(2)+y^(2)<=9 pi^(2) is/are

If x in[0,6 pi],y in[0,6 pi] then the number of ordered pair (x,y) which satisfy the equation sin^(-1)sin x+cos^(-1)cos y=(3 pi)/(2) are

Find the number of real ordered pair(s) (x,y) for which: 16^(x^(2)+y)+16^(x+y^(2))=1

The total number of ordered pairs (x, y) satisfying |y|=cosx and y=sin^(-1)(sinx) , where x in [-2pi, 3pi] is equal to :

The total number of ordered pairs (x, y) satisfying |y|=cosx and y=sin^(-1)(sinx) , where x in [-2pi, 3pi] is equal to :

For x in[-2 pi,3 pi] and y in R, the number of ordered pairs (x,y) satisfying the equation sqrt(3)sin x-cos x-3y^(2)+6y-5=0, is equal to

Number of ordered pair (x,y) which satisfies the relation (x^(4)+1)/(8x^(2))=sin^(2)y*cos^(2) y , where y in [0,2pi]