Home
Class 12
MATHS
If sum(k=0)^n(k^2+k+1)(k!)=(2018)(2018!)...

If `sum_(k=0)^n(k^2+k+1)(k!)=(2018)(2018!)`, then the value of n is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If sum_(k=1)^(k=n)tan^(- 1)((2k)/(2+k^2+k^4))=tan^(- 1)(6/7), then the value of 'n' is equal to

If sum_(k=1)^(k=n)(tan^(-1)(2k))/(2+k^(2)+k^(4))=tan^(-1)((6)/(7)), then the value of ' 'n' is equal to

Let f(n)= sum_(k=1)^(n) k^2 ^"(n )C_k)^ 2 then the value of f(5) equals

Let f(n)= sum_(k=1)^(n) k^2 ^"(n )C_k)^ 2 then the value of f(5) equals

If for n in N,sum_(k=0)^(2n)(-1)^(k)(2nC_(k))^(2)=A, then find the value of sum_(k=0)^(2n)(-1)^(k)(k-2n)(2nC_(k))^(2)

If U_(n) = |[1,K,K],[2n,K^(2)+K+1,K],[2n+1,K^(2)+K+1,K]| and sum_(n=1)^(K)U_(n)=-90 then absolute value of K is equal to

If underset(k=0)overset(n)(sum)(k^(2)+k+1)k! =(2007).2007! , then value of n is

If underset(k=0)overset(n)(sum)(k^(2)+k+1)k! =(2007).2007! , then value of n is

Let f(n)=sum_(k=1)^(n) k^2(n C_k)^ 2 then the value of f(5) equals