Home
Class 12
MATHS
If (1+ sqrt(5))^n = A + Bsqrt(5) ; n in ...

If `(1+ sqrt(5))^n = A + Bsqrt(5) ; n in N`. Then the value of `(A + B)^2 - 6B^2 - 2AB` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (6^(n+3) - 32.6^(n+1))/(6^(n+2) - 2.6^(n+1)) is equal to

If 4cos36^(@)+cot(7(1^(@))/(2))=sqrt(n_(1))+sqrt(n_(2))+sqrt(n_(3))+sqrt(n_(4))+sqrt(n_(5))+sqrt(n_(6)) , then the value of ((Sigma_(i=1)^(6)n_(i)^(2))/(10)) is equal to

If 4cos36^(@)+cot(7(1^(@))/(2))=sqrt(n_(1))+sqrt(n_(2))+sqrt(n_(3))+sqrt(n_(4))+sqrt(n_(5))+sqrt(n_(6)) , then the value of ((Sigma_(i=1)^(6)n_(i)^(2))/(10)) is equal to

If A,B and C are n xx n matrices and det(A)=2,det(B)=3 and det(C)=5 then the value of the det (A^(2)BC^(-1)) is equal to

If (1-tan^(2)36^(@))/(2)=sqrt(a)-sqrt(b) ,then the value of (a+b) is equal to (a,b in N) (A)5 (B) 9 (C) 7 (D)None of these