Home
Class 12
MATHS
Prove that the differential equation for...

Prove that the differential equation for ` a cos(logx) + b sin (logx)` is `x^2 (d^2y)/(dx^2) + x(dy)/(dx) +y =0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y = a cos(logx) + b sin(log x) , show that, x^2(d^2y)/(dx^2)+x(dy)/(dx) + y = 0

If y=acos(logx)+bsin(logx), prove that x^2(d^2y)/(dx^2)+\ x(dy)/(dx)+y=0

If y=acos(logx)+bsin(logx), show, that, x^2(d^2y)/(dx^2)+x(dy)/(dx)+y=0 .

If y=3cos(logx) +4sin(log x) ,Show that x^2(d^2y)/(dx^2)+x(dy)/(dx)+y=0 .

If y=Acos(logx)+\ Bsin(logx) , prove that x^2\ (d^2y)/(dx^2)+x(dy)/(dx)+y=0 .

If y=sin(logx) , prove that x^2(d^2y)/(dx^2)+x(dy)/(dx)+y=0 .

If y=3cos(logx)+4sin(logx),\ then show that x^2(d^2\ y)/(dx^2)+x(dy)/(dx)+y=0

Solve the differential equation : xdy/dx+2y=(logx)/x^2 .

Solve the differential equation x*(dy)/(dx)-y=logx .

Solve the differential equation x*(dy)/(dx)-y=logx .