Home
Class 12
MATHS
[" If "alpha,beta,gamma" are the roots o...

[" If "alpha,beta,gamma" are the roots of the equation "],[x^(2)(px+q)=r(x+1)." Prove that "],[[1+alpha,1,1],[1,1+beta,1],[1,1,1+gamma]|=0]

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha,beta,gamma are roots of the equation x^(2) (px+q)=r(x+1), then the value of determinant |(1+alpha,1,1),(1,1+beta,1),(1,1,1+gamma)| is a) alpha beta gamma b) 1+(1)/(alpha)+(1)/(beta)+(1)/(gamma) c)0 d)None of these

If alpha , beta , gamma are roots of the equation x^(2)(px+q)=r(x+1) , then the value of determinant |{:(1+alpha,1,1),(1, 1+beta,1),(1,1,1+gamma):}| is

If alpha , beta , gamma are roots of the equation x^(2)(px+q)=r(x+1) , then the value of determinant |{:(1+alpha,1,1),(1, 1+beta,1),(1,1,1+gamma):}| is

If alpha , beta and gamma the roots of the equation x^2(px + q) = r(x + 1). Then the value of determinant |(1+alpha,1,1),(1,1+beta,1),(1,1,1+gamma)| is (A) alpha beta gamma (b) 1+1/alpha+1/beta+1/gamma (c) 0 (d) non of these

If alpha,beta,gamma are the roots of the equation (x^3+x^2+x+1)=0 then |{:(1+alpha," "1," "1),(" "1,1+beta," "1),(" "1," "1,1+gamma):}| is equal to

If alpha,beta,gamma are the roots of the equation (x^3+x^2+x+1)=0 then |{:(1+alpha^2," "1," "1),(" "1,1+beta^2," "1),(" "1," "1,1+gamma^2):}| is equal to

If alpha, beta, gamma are roots of the equation x^(3) + px^(2) + qx + r = 0 , then sum (1)/(alpha beta ) =

If alpha,beta,gamma are the roots of the equation x^(3)+2x+r=0 the equation whose roote are -alpha^(-1),-beta^(-1),-gamma^(-1) is

If alpha, beta, gamma are roots of the equation x^(3)+px^(2)+qx+r= 0 , then prove that (1-alpha^(2))(1- beta^(2)) (1- gamma^(2))=(1+q)^(2)-(p+r)^(2)

If alpha, beta , gamma are the roots of the equation x^3-3x+2=0 then the equation whose roots are 1/alpha,1/beta,1/gamma is :