Home
Class 12
MATHS
If I=int0^a (dx)/(sqrt(x+a)+sqrtx)=int0^...

If `I=int_0^a (dx)/(sqrt(x+a)+sqrtx)=int_0^(pi/8) (2tantheta)/(sin2theta) d(theta)`,(where `a>0)` (A) `a=3/4` (B) `cot((3pi)/8)` (C) `tan((3pi)/8)` (D) `tan(pi/8)

Promotional Banner

Similar Questions

Explore conceptually related problems

If int_0^a(dx)/(sqrt(x+a)+sqrt(x))=int_0^(pi/8)(2tantheta)/(sin2theta)dtheta, then value of ' a ' is a equal to (a >0) 3/4 (b) pi/4 (c) (3pi)/4 (d) 9/(16)

If int_0^a(dx)/(sqrt(x+a)+sqrt(x))=int_0^(pi/8)(2tantheta)/(sin2theta)d theta then value of ' a ' is a equal to (a >0) (a) 3/4 (b) pi/4 (c) (3pi)/4 (d) 9/(16)

If int_(0)^(a)(dx)/(sqrt(x+a)+sqrt(x))=int_(0)^((pi)/(3))(2tan theta)/(sin2 theta)d theta, then value of a' is a equal to (a>0)(3)/(4)( b) (pi)/(4)(c)(3 pi)/(4) (d) (9)/(16)

int_(0)^((pi)/(2))(sec theta-tan theta)d theta

int_0^(pi/8) tan^(2) (2x) dx =

int_(0)^(pi//8) cos^(3)4 theta d theta=

int_(0)^(pi//8) cos^(3)4 theta d theta=

Show that int_0^(pi/2)sqrt((sin2theta))sintheta d theta=pi/4

Show that int_0^(pi/2)sqrt((sin2theta))sintheta d theta=pi/4

Show that int_0^(pi/2)sqrt((sin2theta))sintheta d theta=pi/4