Home
Class 12
MATHS
Let vec r , vec a , vec ba n d vec c be...

Let ` vec r , vec a , vec ba n d vec c` be four nonzero vectors such that ` vec rdot vec a=0,| vec rxx vec b|=| vec r|| vec b|a n d| vec rxx vec c|=| vec r|| vec c|dot` Then `[abc]` is equal to `|a||b||c|` b. `-|a||b||c|` c. `0` d. none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

Let vec r , vec a , vec ba n d vec c be four nonzero vectors such that vec rdot vec a=0,| vec rxx vec b|=| vec r|| vec b|a n d| vec rxx vec c|=| vec r|| vec c|dot Then [abc] is equal to a. |a||b||c| b. -|a||b||c| c. 0 d. none of these

Let vec r,vec a,vec b and vec c be four nonzero vectors such that vec r*vec a=0,|vec r xxvec b|=|vec r||vec b| and |vec r xxvec c|=|vec r||vec c| Then [abc] is equal to |a||b||c| b.-|a||b||c| c.0 d.none of these

If vec a , vec b , vec ca n d vec d are distinct vectors such that vec axx vec c= vec bxx vec da n d vec axx vec b= vec cxx vec d , prove that ( vec a- vec d)dot (vec b- vec c)!=0,

If vec a ,\ vec b ,\ vec c are three non coplanar vectors such that vec d dot vec a= vec d dot vec b= vec d dot vec c=0, then show that d is the null vector.

If vec a , vec b , vec ca n d vec d are distinct vectors such that vec axx vec c= vec bxx vec da n d vec axx vec b= vec cxx vec d , prove that ( vec a- vec d). (vec b- vec c)!=0,

If vec a , vec b , vec ca n d vec d are distinct vectors such that vec axx vec c= vec bxx vec da n d vec axx vec b= vec cxx vec d , prove that ( vec a- vec d). (vec b- vec c)!=0,

If vec a , vec b , vec ca n d vec d are distinct vectors such that vec axx vec c= vec bxx vec da n d vec axx vec b= vec cxx vec d , prove that ( vec a- vec d). (vec b- vec c)!=0,

If vec b is not perpendicular to vec c , then find the vector vec r satisfying the equation vec rxx vec b= vec axx vec b and vec r. vec c=0.

If vec b is not perpendicular to vec c , then find the vector vec r satisfying the equyation vec rxx vec b= vec axx vec b and vec r. vec c=0.