Home
Class 12
MATHS
In a four-dimensional space where uni...

In a four-dimensional space where unit vectors along the axes are ` hat i , hat j , hat ka n d hat l ,a n d vec a_1, vec a_2, vec a_3, vec a_4` are four non-zero vectors such that no vector can be expressed as a linear combination of others and `(lambda-1)( vec a_1- vec a_2)+mu( vec a_2+ vec a_3)+gamma( vec a_3+ vec a_4-2 vec a_2)+ vec a_3+delta vec a_4=0,` then a. `lambda=1` b. `mu=-2//3` c. `gamma=2//3` d. `delta=1//3`

Promotional Banner

Similar Questions

Explore conceptually related problems

In a four-dimensional space where unit vectors along the axes are hat i , hat j , hat k and hat l , and vec a_1, vec a_2, vec a_3, vec a_4 are four non-zero vectors such that no vector can be expressed as a linear combination of others and (lambda-1)( vec a_1- vec a_2)+mu( vec a_2+ vec a_3)+gamma( vec a_3+ vec a_4-2 vec a_2)+ vec a_3+delta vec a_4=0, then

In a four-dimensional space where unit vectors along the axes are hat i , hat j , hat k and hat l , and vec a_1, vec a_2, vec a_3, vec a_4 are four non-zero vectors such that no vector can be expressed as a linear combination of others and (lambda-1)( vec a_1- vec a_2)+mu( vec a_2+ vec a_3)+gamma( vec a_3+ vec a_4-2 vec a_2)+ vec a_3+delta vec a_4=0, then

In a four-dimensional space where unit vectors along the axes are hat i , hat j , hat k and hat l , and vec a_1, vec a_2, vec a_3, vec a_4 are four non-zero vectors such that no vector can be expressed as a linear combination of others and (lambda-1)( vec a_1- vec a_2)+mu( vec a_2+ vec a_3)+gamma( vec a_3+ vec a_4-2 vec a_2)+ vec a_3+delta vec a_4=0, then

Show that the vectors a, b, c given by vec a= hat i+2 hat j+3 hat k , vec b=2 hat i+ hat j+3 hat ka n d vec c= hat i+ hat j+ hat k are non-coplanar. Express vector vec d=2 hat i-3 hat k as a liner combination of the vectors vec a , vec b ,a n d vec c .

If vec a= hat i+ hat j+ hat ka n d vec b= hat i-2 hat j+ hat k , then find vector vec c such that vec adot vec c=2a n d vec axx vec c= vec bdot

If vec a= hat i+ hat j+ hat ka n d vec b= hat i-2 hat j+ hat k , then find vector vec c such that vec adot vec c=2a n d vec axx vec c= vec bdot

Find a unit vector in the direction of vec a- 2 vec b+ 3 vec c if vec a= hat i+ hat j , vec b= hat j+ hat k and vec c= vec i+ vec k .

If vec rdot hat i= vec rdot hat j= vec rdot hat ka n d| vec r|=3, then find the vector vec rdot

If vec a=hat i+hat j+hat k and vec b=hat j-hat k, find a vector vec c such that vec a x vec c=vec b and vec a*vec c=3