Home
Class 11
MATHS
The value of sin^(-1)(sin12)+sin^(-1)(co...

The value of `sin^(-1)(sin12)+sin^(-1)(cos12)=`

Text Solution

Verified by Experts

`sin^(-1)(sin12sqrt(1-cos12)+sqrt(1-sin12)*cos12)`
`sin^(-1)(sin12*sin12+cos12*cos12)`
`sin^(-1)(sin^2 12+cos^2 12)`
`sin^(-1)(1)`
`pi/2`.
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sin^(-1)(sin12)+cos^(-1)(cos12)=

The value of Sin^(-1)(sin12)+Cos^(-1)(cos12)=

The value of sin^(-1) (sin 12) - cos^(-1) (cos12) is equal to :

The value of sin^(-1) (sin 12) + cos^(-1) (cos 12) is equal to

The value of sin^(-1) (sin 12) + cos^(-1) (cos 12) is equal to

The value of sin^(-1) (sin 12) + cos^(-1) (cos 12) is equal to

Find the value of sin^(-1) (sin 12) and cos^(-1) (cos 12)

Find the value of sin^(-1)(sin7)+cos^(-1)(cos12)+tan^(-1){tan(-8)}+cot^(-1){cot(-11)}dot

The value of cos^(-1)(cos12)-sin^(-1)(sin12) is

The value of cos^(-1)(cos 12)-sin^(-1)(sin 14) is