Home
Class 12
MATHS
Let f(x)= lim(n->oo)(sinx)^(2n)...

Let `f(x)= lim_(n->oo)(sinx)^(2n)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=lim_(n rarr oo)(sin x)^(2n)

Let f(x)=lim_(n->oo)(log(2+x)-x^(2n)sinx)/(1+x^(2n)) . then

Let f(x)=(lim)_(n->oo)(2x^(2n)sin1/x+x)/(1+x^(2n))\ then find :\ (lim)_(x->-oo)f(x)

lim_(n->oo)sin(x/2^n)/(x/2^n)

Let f(x)=lim_(n to oo) ((2 sin x)^(2n))/(3^(n)-(2 cos x)^(2n)), n in Z . Then

Let f(x)=lim_(n to oo) ((2 sin x)^(2n))/(3^(n)-(2 cos x)^(2n)), n in Z . Then

Let f(x)=lim_(n->oo)(2x^(2n)sin(1/x)+x)/(1+x^(2n)) then find (a) lim_(x->oo) xf(x) (b) lim_(x->1) f(x) (c) lim_(x->0) f(x) (d) lim_(x->-oo) f(x)

Let f(x)=lim_(ntooo) (x)/(x^(2n)+1). Then

Let f(x)=lim_(ntooo) (x)/(x^(2n)+1). Then

Let f(x)=lim_(n rarr oo)(2x^(2n)sin\ 1/x+x)/(1+x^(2n)) then find (a) lim_(x rarr oo) x f(x) (b) lim_(x rarr 1) f(x)