Home
Class 12
MATHS
If A+I3=[[1,3,4],[-1,1,3],[-2,-3,1]], ev...

If `A+I_3=[[1,3,4],[-1,1,3],[-2,-3,1]]`, evaluate `(A+I_3)(A-I_3)`, where `I_3` represents `3xx3` unit matrix.

Promotional Banner

Similar Questions

Explore conceptually related problems

Find matrix A.A+I_(3)=[[1,3,4-1,1,3-2,-3,1]]

If A=[{:(1,0,-1),(2,1,3),(0,1, 1):}] then verify that A^(2)+A=A(A+I) , where I is 3xx3 unit matrix.

If A=[{:(1,0,-1),(2,1,3),(0,1,1):}] , then verify that A^(2)+A=A(A+I) where I is 3xx3 unit matrix.

If A=[{:(,2,-1),(,-1, 3):}]" evaluate "A^2-3A+3I , where I is a unit matrix of order 2.

If A= '[[1,2,3],[3,-2,1], [4, 2, 1]] , then find A^2-23A-40 I where I is Identify Matrix.

If A=[[5,4],[-2,3]] and B=[[-1,3],[4,-1]] ,then find C^T such that 3A-2B+C=I ,where I is the unit matrix of order 2.

If A = [[1,x,-2],[2,2,4],[0,0,2]] and A^2+2I_3=3A Find x, here I_3 is the unit matrix of order 3.

If A=[[1,-2],[5,3]],B=[[1,-3],[4,-7]] ,then find the matrix A-2B+6I , where I is the unit matrix of order 2.

If A=[(1, 0,-3 ),(2, 1 ,3 ),(0, 1 ,1)] , then verify that A^2+A=A(A+I) , where I is the identity matrix.