Home
Class 12
MATHS
y=sqrt(x/a)-sqrt(a/x) Prove that 2xy(dy/...

`y=sqrt(x/a)-sqrt(a/x)` Prove that `2xy(dy/dx)=x/a-a/x`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=sqrt(x/a)+sqrt(a/x) , prove that 2x y(dy)/(dx)=(x/a-a/x)

If y = sqrt(x/(a))-sqrt(a/(x)) show that 2xy (dy)/(dx)=(x)/(a)-(a)/(x)

y=sqrt((x)/(a))+sqrt((a)/(x)), provethat2xy (dy)/(dx)=((x)/(a)-(a)/(x))

If y=sqrt(x)+1/(sqrt(x)) , prove that 2x(dy)/(dx)=sqrt(x)-1/(sqrt(x))

If y=log(sqrt(x)+sqrt(1/x)), prove that (dy)/(dx)=(x-1)/(2x(x+1))

y=sqrt(x)+(1)/(sqrt(x)), prove that 2x(dy)/(dx)=sqrt(x)-(1)/(sqrt(x))

If y=sqrt(x)+(1)/(sqrt(x)), prove that 2x(dy)/(dx)=sqrt(x)-(1)/(sqrt(x))

If y=log(sqrt(x)+(1)/(sqrt(x))). Prove that (dy)/(dx)=(x-1)/(2x(x+1))

If y = sqrt(x/(m))+sqrt(m/(x)) show that 2xy (dy)/(dx) = (x)/(m) - (m)/(x) *

If y=log(sqrt(x)+(1)/(sqrt(x))), prove that (dy)/(dx)=(x-1)/(2x(x+1))