Home
Class 12
PHYSICS
If oint(S) vec(E ).vec(dS) = 0 over a s...

If `oint_(S) vec(E ).vec(dS) = 0` over a surface then,

A

the electric field inside the surface and on it is zero

B

the electric field inside the surface is necessarity uniform

C

the number of flux lines entering the surface must be equal to the number of flux lines leaving it

D

all charges must necessarily be outside the surface.

Text Solution

Verified by Experts

The correct Answer is:
C, D
Promotional Banner

Topper's Solved these Questions

  • ELECTRIC FIELD

    CHHAYA PUBLICATION|Exercise EXERCISE ( MULTIPLE CHOICE QUESTION )|33 Videos
  • ELECTRIC FIELD

    CHHAYA PUBLICATION|Exercise EXERCISE ( VERY SHORT ANSWER TYPE QUESTIONS )|34 Videos
  • ELECTRIC FIELD

    CHHAYA PUBLICATION|Exercise NCERT TEXTBOOK QUESTIONS WITH ANSWER HINT|24 Videos
  • ELECTRIC ENERGY AND POWER

    CHHAYA PUBLICATION|Exercise CBSE SCANNER|7 Videos
  • ELECTRIC POTENTIAL

    CHHAYA PUBLICATION|Exercise CBSE Scanner|13 Videos

Similar Questions

Explore conceptually related problems

If vec(a) = vec(0) or vec(b) = vec(0) then vec(a).vec(b) = 0 , show by an example that the converse of this statement is not always true .

If vec(a),vec(b),vec (c ) are non - coplanar vectors vec (r) . vec(a) = vecr . vec(b) = vecr.vec(c ) = 0 , show that vec (r ) is a zero vector .

The diagonals of the parallelogram ABCD intersect at E. If vec(a), vec(b), vec(c) " and " vec(d) be the position vectors of its vertices with respect to an arbitary origin O, then show that vec(a)+vec(b)+vec(c)+vec(d)=4vec(OE) .

Given that vec(a) . vec(b) = 0 and vec(a) xx vec(b) = vec(0) . What can you conclude abut the vector vec(a) and vec(b) ?

Find the equation of a straight line in the plane vec r* vec n=d which is parallel to vec r= vec a+lambda vec b and passes through the foot of the perpendicular drawn from point P( vec a)to vec rdot vec n=d(w h e r e vec ndot vec b=0)dot a. vec r= vec a+((d- vec a*vec n)/(n^2))n+lambda vec b b. vec r= vec a+((d- vec a* vec n)/n)n+lambda vec b c. vec r= vec a+(( vec a* vec n-d)/(n^2))n+lambda vec b d. vec r= vec a+(( vec a* vec n-d)/n)n+lambda vec b

If vec(a) + vec(b) + vec (c ) = vec(0) , show that vec(a) xx vec(b) = vec(b) xx vec(c ) = vec(c ) xx vec(a)

Let vec aa n d vec b be two non-collinear unit vector. If vec u= vec a-( vec adot vec b) vec ba n d vec v= vec axx vec b ,t h e n| vec v| is a. | vec u| b. | vec u|+| vec udot vec a| c. | vec u|+| vec udot vec b| d. | vec u|+ hat udot| vec a+ vec b|

If vec(a) + vec (b)+vec(c ) = vec (0) and |vec(a)| = 3 , |vec(b)| = 5 and |vec(c)| = 7 , , find the angle between the vectors vec(a) and vec(b)

If vec(a) , vec(b) and vec (c ) are three unit vectors such that vec(a).vec(b) = vec(a).vec (c )=0 and angle between vec(b) and vec (c ) is pi/6 , prove that , vec (a) = pm 2 ( vec(b) xx vec(c ))

The projection of point P( vec p) on the plane vec r. vec n=q is ( vec s) , then a. vec s=((q- vec p. vec n) vec n)/(| vec n|^2) b. vec s=p+((q- vec p. vec n) vec n)/(| vec n|^2) c. vec s=p-(( vec p. vec n) vec n)/(| vec n|^2) d. vec s=p-((q- vec p. vec n) vec n)/(| vec n|^2)