Home
Class 12
PHYSICS
Define relaxation time of the free elect...

Define relaxation time of the free electrons drifting in a conductor.How is it related to the drift velocity of free electrons? Use this relation to deduce the expression for the electrical resistivity of the material.

Text Solution

Verified by Experts

The resistance time or mean free time `(t_0)` of a free electron inside a conductor is defined as the average time spent by the electron between two successive collisions.
It is assumed that just after a collision, the electron velocity is reduced to zero. Then the force on it due to the applied electric field E is eE.So the acceleration of the electron is `(eE)/m` and the velocity attained by it just before the next collision `= (eE)/mt_0`.Therefore, the average or drift velocity of free electrons inside a conductor is
`v=(0+(eE)/3t_0)/2or,v=(eE)/(2m)t_0`
or,`t_0=(2m)/(eE)tv`.....(1)
we also know, `v=1/( n e A)`
So, `1/(n e A)=(eE)/(2m)t_0or,E=(2m)/(n e^2 At_0)l`
Now, if the potential difference applied between the ends of a conductor of length l, then `E=V/l`.
then its resistance, `R=V/l=(El)/l=(ml)/(me^2At_0)=rho1/A`
So the electrical resistivity of the material is
`rho=(2nm)/(n e^2t_0)`
Also, substituting `t_0` from (1), we have
`rho=(eE)/(n e^2v)=E/(n ev)`....(3)
Promotional Banner

Topper's Solved these Questions

  • CURRENT ELECTRICITY

    CHHAYA PUBLICATION|Exercise EXAMINATION ARCHIVE WITH SOLUTIONS(NEET)|5 Videos
  • COMMUNICATION STSTEM

    CHHAYA PUBLICATION|Exercise CBSE SCANNER|28 Videos
  • DIFFRACTION AND POLARISATION OF LIGHT

    CHHAYA PUBLICATION|Exercise CBSE SCANNER|27 Videos

Similar Questions

Explore conceptually related problems

IF potential differences V applied across a conductor is increased to 2V,how will the drift velocity of electrons change?

In a metallic conductor, the number of free electrons per unit volume is n and the drift velocity of those electrons is v_d . Then

Derive an expression for drift velocity of electrons in a conductor. Hence deduce Ohm's law.

Velocity of electric current is much more___ than the drift velocity of free electrons in a metallic conductor [Fill in the blanks].

Explain the term drift velocity of electrons in a conductor.Hence obtain the expression for the current through a conductor in terms of drift velocity.

Establish the relation between drift velocity of electron and current density in metallic conductor.

Establish the relation between drift velocity of electron and current density in metallic conductor.

If a current passes through a metal conducting wire of area of cross section A, the drift velocity of free electrons inside the metal is v_d=1/( n e A) , where the amount of electric charge of an electron =e and the number of free electrons per unit volume of the metal=n. The applied electric field on the wire is E=V/l , where a potential difference V exists between two points, l apart, along the length of the wire. IF R is the resistance of the wire between those two points, then the resistivity of its material is rho=(RA)/l .Besides the mobility (mu) of the free electrons inside a wire is defined as their drift velocity for a unit applied electric field. The radii of two wires of the same metal are in the ratio 1:2 The same potential difference is applied between two points at a distance l on each of the wires.The ratio between the drift velocities of the free electrons in two wires is

If a current passes through a metal conducting wire of area of cross section A, the drift velocity of free electrons inside the metal is v_d=1/( n e A) , where the amount of electric charge of an electron =e and the number of free electrons per unit volume of the metal=n. The applied electric field on the wire is E=V/l , where a potential difference V exists between two points, l apart, along the length of the wire. IF R is the resistance of the wire between those two points, then the resistivity of its material is rho=(RA)/l .Besides the mobility (mu) of the free electrons inside a wire is defined as their drift velocity for a unit applied electric field. The current through unit cross section of a conductor,called the electric current density J, is related with the applied electric field E as

Using the concept of free electrons in a conductor, derive the expression for the conductivity of a wire in terms of number density and relaxation time. Hence obtain the relation between current density and the applied electric field E.

CHHAYA PUBLICATION-CURRENT ELECTRICITY -CBSE SCANNER
  1. Two wires of equal length, one of copper and the other of manganin hav...

    Text Solution

    |

  2. Define relaxation time of the free electrons drifting in a conductor.H...

    Text Solution

    |

  3. Explain the term drift velocity of electrons in a conductor.Hence obta...

    Text Solution

    |

  4. A cell of emf E and internal resistance r is connected across a variab...

    Text Solution

    |

  5. Estimate the average drift speed of conduction electrons in a copper w...

    Text Solution

    |

  6. Two metallic resistors are connected first in series and then in paral...

    Text Solution

    |

  7. Define the electric resistivity of conductor. Plot a graph showing...

    Text Solution

    |

  8. Define mobility of a charge carrier.What is its relation with relaxati...

    Text Solution

    |

  9. When 5V potential difference is applied across a wire of length 0.1 m,...

    Text Solution

    |

  10. Two identical cells of emf 1.5V each joined in parallel supply energy ...

    Text Solution

    |

  11. Derive an expression for drift velocity of electrons in a conductor. H...

    Text Solution

    |

  12. A wire whose cross sectional area is increasing linearly from its one ...

    Text Solution

    |

  13. In the figure.1.119 an ammeter A and a resistor of 4 Omega are connect...

    Text Solution

    |

  14. Define the term 'conductivity' of a metallic wire. Write its SI unit.

    Text Solution

    |

  15. Using the concept of free electrons in a conductor, derive the express...

    Text Solution

    |

  16. A 10 V cell of negligible internal resistance is connected In parallel...

    Text Solution

    |