Home
Class 12
PHYSICS
Show that , the energy density in an ele...

Show that , the energy density in an electromagnetic field, `u= in_0 E_0^2=1/(mu_0)B_0^2`

Promotional Banner

Topper's Solved these Questions

  • ELECTROMAGNETIC WAVES

    CHHAYA PUBLICATION|Exercise HOTS QUESTIONS|5 Videos
  • ELECTROMAGNETIC WAVES

    CHHAYA PUBLICATION|Exercise NCERT TEXTBOOK QUESTIONS|23 Videos
  • ELECTROMAGNETIC WAVES

    CHHAYA PUBLICATION|Exercise CBSE SCANNER|17 Videos
  • ELECTROMAGNETIC INDUCTION & ALTERNATING CURRENT

    CHHAYA PUBLICATION|Exercise CBSE SCANNER|28 Videos
  • ELECTROMAGNETISM

    CHHAYA PUBLICATION|Exercise CBSE SCANNER|26 Videos

Similar Questions

Explore conceptually related problems

Electromagnetic waves propagate through free space or a medium as transverse waves. The electric and magnetic fields are perpendicular to each other as well as perpendicular to the direction of propagation of waves at each point. In the direction of wave propagation, electric field vecE and magnetic field vecB form a right-handed cartesian coordinate system. During the propagation of electromagnetic wave, total energy of electromagnetic wave is distributed equally between electric and magnetic fields. Since in_0 and mu_0 are permittivity and permeability of free space, the velocity of electromagnetic wave, c=(in_0 mu_0)^(-1//2) . Energy density i.e., energy in unit volume due to electric field at any point, u_E=1/2in_0E^2 Similarly, energy density due to magnetic field , u_M=1/(2mu_0)B^2 . If the electromagnetic wave propagates along x-direction, then the equations of electric and magnetic field are respectively. E=E_0sin(omegat-kx) and B=B_0sin(omegat-kx) Here, the frequency and the wavelength of oscillating electric and magnetic fields are f=omega/(2pi) and lambda=(2pi)/k respectively. Thus E_"rms"=E_0/sqrt2 and B_"rms"=B_0/sqrt2 , where E_0/B_0=c . Therefore, average energy density baru_E=1/2in_0E_"rms"^2 and baru_M=1/(2mu_0)B_"rms"^2 . The intensity of the electromagnetic wave at a point, I=cbaru=c(baru_E+baru_B) . To answer the following questions , we assume that in case of propagation of electromagnetic wave through free space, c=3xx10^8 m.s^(-1) and mu_0=4pixx10^(-7) H.m^(-1) If the peak value of electric field at a point in electromagnetic wave is 15 V . m^(-1) , then average electrical energy density (in j . m^(-3) )

Electromagnetic waves propagate through free space or a medium as transverse waves. The electric and magnetic fields are perpendicular to each other as well as perpendicular to the direction of propagation of waves at each point. In the direction of wave propagation, electric field vecE and magnetic field vecB form a right-handed cartesian coordinate system. During the propagation of electromagnetic wave, total energy of electromagnetic wave is distributed equally between electric and magnetic fields. Since in_0 and mu_0 are permittivity and permeability of free space, the velocity of electromagnetic wave, c=(in_0 mu_0)^(-1//2) . Energy density i.e., energy in unit volume due to electric field at any point, u_E=1/2in_0E^2 Similarly, energy density due to magnetic field , u_M=1/(2mu_0)B^2 . If the electromagnetic wave propagates along x-direction, then the equations of electric and magnetic field are respectively. E=E_0sin(omegat-kx) and B=B_0sin(omegat-kx) Here, the frequency and the wavelength of oscillating electric and magnetic fields are f=omega/(2pi) and lambda=(2pi)/k respectively. Thus E_"rms"=E_0/sqrt2 and B_"rms"=B_0/sqrt2 , where E_0/B_0=c . Therefore, average energy density baru_E=1/2in_0E_"rms"^2 and baru_M=1/(2mu_0)B_"rms"^2 . The intensity of the electromagnetic wave at a point, I=cbaru=c(baru_E+baru_B) . To answer the following questions , we assume that in case of propagation of electromagnetic wave through free space, c=3xx10^8 m.s^(-1) and mu_0=4pixx10^(-7) H.m^(-1) if the wavelength is 1000Å, then the frequency (in Hz)

Electromagnetic waves propagate through free space or a medium as transverse waves. The electric and magnetic fields are perpendicular to each other as well as perpendicular to the direction of propagation of waves at each point. In the direction of wave propagation, electric field vecE and magnetic field vecB form a right-handed cartesian coordinate system. During the propagation of electromagnetic wave, total energy of electromagnetic wave is distributed equally between electric and magnetic fields. Since in_0 and mu_0 are permittivity and permeability of free space, the velocity of electromagnetic wave, c=(in_0 mu_0)^(-1//2) . Energy density i.e., energy in unit volume due to electric field at any point, u_E=1/2in_0E^2 Similarly, energy density due to magnetic field , u_M=1/(2mu_0)B^2 . If the electromagnetic wave propagates along x-direction, then the equations of electric and magnetic field are respectively. E=E_0sin(omegat-kx) and B=B_0sin(omegat-kx) Here, the frequency and the wavelength of oscillating electric and magnetic fields are f=omega/(2pi) and lambda=(2pi)/k respectively. Thus E_"rms"=E_0/sqrt2 and B_"rms"=B_0/sqrt2 , where E_0/B_0=c . Therefore, average energy density baru_E=1/2in_0E_"rms"^2 and baru_M=1/(2mu_0)B_"rms"^2 . The intensity of the electromagnetic wave at a point, I=cbaru=c(baru_E+baru_B) . To answer the following questions , we assume that in case of propagation of electromagnetic wave through free space, c=3xx10^8 m.s^(-1) and mu_0=4pixx10^(-7) H.m^(-1) Relation between omega and k

In a plane electromagnetic wave, the electric field oscillates sinusoidally at a frequency of 2.0xx10^10 Hz and amplitude 48 V. m^(-1) . Show that the average energy density of the electric field equals the average energy density of the magnetic field. [c=3xx10^8 m.s^(-1)]

In a plane electromagnetic wave, the electric field sinusoidally oscillates at a frequency 2 xx 10^10 Hz and amplitude 45 V . m^(-1) . (i) What is the wavelength of the wave? (ii) What is the amplitude of the oscillating magnetic field? (iii) Find out the relation between average energy density of the electric field vecE(u_E) and the average energy density of the magnetic field vecB(u_B)